Data Preparation
Overview
- Data Directory: Use a data directory formatted in one of the supported structures. For more details, refer to the LuxonisParser.
- LuxonisDataset Format: Utilize an existing dataset in the custom LuxonisDataset format. For further guidance, see the LuxonisDataset documentation.
- Custom Loader: Implement a custom loader to meet specific data handling needs. To learn how to create and use custom loaders, visit the Customizations section.
Data Directory
Preparing Your Data
- Organize your dataset in one of the supported formats.
- Place your dataset in a directory accessible to the training script.
- Update the dataset_dir parameter in your configuration file to point to the dataset directory.
dataset_dir can be one of the following:- Local path to the dataset directory.
- URL to a remote dataset: The dataset will be downloaded to a "data" directory in the current working directory.
s3://bucket/path/to/directoryfor AWS S3gs://bucket/path/to/directoryfor Google Cloud Storageroboflow://workspace/project/version/formatfor RoboFlow- workspace: Name of the workspace the dataset belongs to.
- project: Name of the project the dataset belongs to.
- version: Version of the dataset.
- format: One of
coco,darknet,voc,yolov4pytorch,mt-yolov6,createml,tensorflow,folder, orpng-mask-semantic.
Yaml
1loader:
2 params:
3 dataset_name: "coco_test"
4 dataset_dir: "roboflow://team-roboflow/coco-128/2/coco"LuxonisDataset
Yaml
1loader:
2 params:
3 # Name of the dataset
4 dataset_name: "dataset_name"
5
6 # Storage type: one of 'local' (default), 's3', or 'gcs'
7 bucket_storage: "local"inspect command. The inspect command shows the images and their corresponding annotations in the dataset.Command Line
1luxonis_train inspect --config configs/detection_light_model.yaml