ON THIS PAGE

  • EdgeDetector
  • How to place it
  • Inputs and Outputs
  • Usage
  • Examples of functionality
  • Reference

EdgeDetector

Edge detector uses Sobel filter to create an image that emphasises edges.

How to place it

Python
C++

Python

Python
1pipeline = dai.Pipeline()
2edgeDetector = pipeline.create(dai.node.EdgeDetector)

Inputs and Outputs

Usage

Python
C++

Python

Python
1pipeline = dai.Pipeline()
2edgeDetector = pipeline.create(dai.node.EdgeDetector)
3
4sobelHorizontalKernel = [[1, 0, -1], [2, 0, -2], [1, 0, -1]]
5sobelVerticalKernel = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]
6edgeDetector.initialConfig.setSobelFilterKernels(sobelHorizontalKernel, sobelVerticalKernel)

Examples of functionality

Reference

class

depthai.node.EdgeDetector(depthai.Node)

method
getWaitForConfigInput(self) -> bool: bool
See also:     setWaitForConfigInput  Returns:     True if wait for inputConfig message, false otherwise
method
setMaxOutputFrameSize(self, arg0: int)
Specify maximum size of output image.  Parameter ``maxFrameSize``:     Maximum frame size in bytes
method
setNumFramesPool(self, arg0: int)
Specify number of frames in pool.  Parameter ``numFramesPool``:     How many frames should the pool have
method
setWaitForConfigInput(self, wait: bool)
Specify whether or not wait until configuration message arrives to inputConfig Input.  Parameter ``wait``:     True to wait for configuration message, false otherwise.
property
initialConfig
Initial config to use for edge detection.
property
inputConfig
Input EdgeDetectorConfig message with ability to modify parameters in runtime. Default queue is non-blocking with size 4.
property
inputImage
Input image on which edge detection is performed. Default queue is non-blocking with size 4.
property
outputImage
Outputs image frame with detected edges

Need assistance?

Head over to Discussion Forum for technical support or any other questions you might have.