Dynamic Calibration
Dynamic Calibration (DCL) is a self-calibration workflow built into DepthAI 3.0 that restores and maintains stereo accuracy when temperature changes, physical shocks, or long-term drift degrade factory calibration.
Key capabilities
- Restore depth performance—brings the disparity map back to optimal visual quality.
- Broad compatibility—works on all stereo devices supported by DepthAI 3.0.
- No targets required—operate in natural scenes; just move the camera to capture a varied view.
- Rapid execution—typically completes in seconds.
- Health monitoring—run diagnostics at any time without flashing new calibration.
Usage of the Dynamic Calibration Library (DCL)
This section demonstrates how to use theDynamicCalibration
node in DepthAI for dynamic calibration workflows.Initializing the DynamicCalibration Node
TheDynamicCalibration
node requires two synchronized camera streams from the same device. Here's how to set it up:Python
1import depthai as dai
2
3# initialize the pipeline
4pipeline = dai.Pipeline()
5
6# Create camera nodes
7cam_left = pipeline.create(dai.node.Camera).build(dai.CameraBoardSocket.CAM_B)
8cam_right = pipeline.create(dai.node.Camera).build(dai.CameraBoardSocket.CAM_C)
9
10# Initialize the DynamicCalibration node
11dyn_calib = pipeline.create(dai.node.DynamicCalibration)
12
13# Link the cameras to the DynamicCalibration
14left_out.link(dyn_calib.left)
15right_out.link(dyn_calib.right)
16
17calibration = device.readCalibration()
18device.setCalibration(calibration)
19
20pipeline.start()
21while pipeline.isRunning():
22 ....
Sending Commands to the Node
Nodes in DepthAI communicate via input/output message queues. The DynamicCalibration node has several queues, but the most important for control is the inputControl queue.Python
1# Initialize the command imput queue
2command_input = dyn_calib.inputControl.createInputQueue()
3# Example commandof sending a
4command_input.send(
5 dai.DynamicCalibrationControl(
6 dai.DynamicCalibrationControl(
7 dai.DynamicCalibrationControl.Commands.StartCalibration()
8 )
9 )
10)
StartCalibration()
- Starts the calibration process.StopCalibration()
- Stops the calibration process.Calibrate(force=False)
- Computes a new calibration based on the loaded data.- force - no restriction on loaded data
CalibrationQuality(force=False)
- Evaluates the quality of the current calibration.- force - no restriction on loaded data
LoadImage()
- Load one image from the device.ApplyCalibration(calibration)
- Apply calibration to the device.SetPerformanceMode(performanceMode)
- Send performance mode which will be used.ResetData()
- Remove all previously loaded data.
Receiving Data from the Node
The node provides multiple output queues:calibrationOutput
→ calibration results (DynamicCalibrationResult)coverageOutput
→ coverage statistics (CoverageData)qualityOutput
→ calibration quality check (CalibrationQuality)
Python
1# queue for recieving new calibration
2calibration_output = dynCalib.calibrationOutput.createOutputQueue()
3# queue for revieving the coverage
4coverage_output = dynCalib.coverageOutput.createOutputQueue()
5# queue for checking the calibration quality
6quality_output = dynCalib.qualityOutput.createOutputQueue()
Data Structures
Python
1# Output data structure from coverageOutput
2class CoverageData:
3 coveragePerCellA: np.ndarray # Coverage per cell [0-1]
4 coveragePerCellB: np.ndarray
5 meanCoverage: float # Average coverage 0-100 %
6 dataAcquired: float # % of data acquired
7 coverageAcquired: float # of the coverage 0-100
8
9# Output of calibration quality checks
10class CalibrationQuality::Data:
11 qualityData:
12 rotationChange: list # Change in rotation [rx, ry, rz] in degrees
13 depthErrorDifference: list # Change in depth error at [1m, 2m, 5m, 10m] in%
14 sampsonErrorCurrent: float # Mean Sampson error before calibration
15 sampsonErrorNew: float # Mean Sampson error after calibration
16
17class CalibrationQuality:
18 CalibrationQuality::Data: # Statistics about calibration change
19 info: str # Error or status message
20
21# Output data structure from calibrationOutput
22class DynamicCalibrationResult::Data:
23 newCalibration: dai.CalibrationHandler
24 currentCalibration: dai.CalibrationHandler
25 # difference between the new and current calibrations
26 calibrationDifference: CalibrationQuality::Data # Error or status message
27
28class DynamicCalibrationResult:
29 calibrationData: DynamicCalibrationResult::Data # None if unsuccessful
30 info: str # Error or status message
Reading Coverage Data
Coverage data is sent viacoverageOutput
when an image is loaded, either manually or during background calibration.Manual Image LoadPython
1# Load a single image
2command_input.send(
3 dai.DynamicCalibrationControl(
4 dai.DynamicCalibrationControl(
5 dai.DynamicCalibrationControl.Commands.LoadImage()
6 )
7 )
8)
9
10# Get coverage after loading
11coverage = coverage_output.get()
12print(f"Coverage = {coverage.meanCoverage}")
Python
1command_input.send(
2 dai.DynamicCalibrationControl(
3 dai.DynamicCalibrationControl(
4 dai.DynamicCalibrationControl.Commands.StartCalibration()
5 )
6 )
7)
8
9
10while pipeline.isRunning():
11 # Blocking read
12 coverage = coverage_output.get()
13 print(f"Coverage = {coverage.meanCoverage}")
14
15 # Non-blocking read
16 coverage = coverage_output.tryGet()
17 if coverage:
18 print(f"Coverage = {coverage.meanCoverage}")
Reading Calibration Data
Calibration results can be obtained from:dai.DynamicCalibrationControl.Commands.StartCalibration()
— starts collecting data and attempts calibration.dai.DynamicCalibrationControl.Commands.Calibrate(force=False)
— calibrates with existing loaded data.
Performance Modes
The performance mode sets the amount of data needed for the calibration.Python
1dai.node.DynamicCalibration.PerformanceMode.OPTIMIZE_PERFORMANCE # The most strict mode
2dai.node.DynamicCalibration.PerformanceMode.DEFAULT # Less strict but mostly sufficient
3dai.node.DynamicCalibration.PerformanceMode.OPTIMIZE_SPEED # Optimize speed over performance
4dai.node.DynamicCalibration.PerformanceMode.STATIC_SCENERY # Not strict
5dai.node.DynamicCalibration.PerformanceMode.SKIP_CHECKS # Skip all internal checks
Examples
Dynamic Calibration Interactive Visualizer
With the following interactive example you can start or force calibration, load images, check quality, undo or apply changes, and reset or update the system. The interface shows clear progress and results with color bars, summaries of changes, an optional depth view, and a help panel you can turn on or off.Command Line
1git clone --depth 1 --branch main https://github.com/luxonis/oak-examples.git
2cd oak-examples/dynamic-calibration/
3pip install -r requirements.txt
4python3 main.py
Calibration Quality check
Python
C++
Python
Run this example by following the README on Github.PythonGitHub
1import depthai as dai
2import numpy as np
3import time
4import cv2
5
6# ---------- Pipeline definition ----------
7with dai.Pipeline() as pipeline:
8 # Create camera nodes
9 monoLeft = pipeline.create(dai.node.Camera).build(dai.CameraBoardSocket.CAM_B)
10 monoRight = pipeline.create(dai.node.Camera).build(dai.CameraBoardSocket.CAM_C)
11
12 # Request full resolution NV12 outputs
13 monoLeftOut = monoLeft.requestFullResolutionOutput(dai.ImgFrame.Type.NV12)
14 monoRightOut = monoRight.requestFullResolutionOutput(dai.ImgFrame.Type.NV12)
15
16 # Initialize the DynamicCalibration node
17 dynCalib = pipeline.create(dai.node.DynamicCalibration)
18
19 # Link the cameras to the DynamicCalibration
20 monoLeftOut.link(dynCalib.left)
21 monoRightOut.link(dynCalib.right)
22
23 stereo = pipeline.create(dai.node.StereoDepth)
24 monoLeftOut.link(stereo.left)
25 monoRightOut.link(stereo.right)
26
27 # Queues
28 syncedLeftQueue = stereo.syncedLeft.createOutputQueue()
29 syncedRightQueue = stereo.syncedRight.createOutputQueue()
30 disparityQueue = stereo.disparity.createOutputQueue()
31
32 # Initialize the command output queues for coverage and calibration quality
33 dynCalibCoverageQueue = dynCalib.coverageOutput.createOutputQueue()
34 dynCalibQualityQueue = dynCalib.qualityOutput.createOutputQueue()
35
36 # Initialize the command input queue
37 dynCalibInputControl = dynCalib.inputControl.createInputQueue()
38
39 device = pipeline.getDefaultDevice()
40 device.setCalibration(device.readCalibration())
41
42 # Setup the colormap for visualization
43 colorMap = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_JET)
44 colorMap[0] = [0, 0, 0] # to make zero-disparity pixels black
45 maxDisparity = 1
46
47 pipeline.start()
48 time.sleep(1) # wait for auto exposure to settle
49
50 while pipeline.isRunning():
51 leftSynced = syncedLeftQueue.get()
52 rightSynced = syncedRightQueue.get()
53 disparity = disparityQueue.get()
54
55 cv2.imshow("left", leftSynced.getCvFrame())
56 cv2.imshow("right", rightSynced.getCvFrame())
57
58 # --- Disparity visualization ---
59 npDisparity = disparity.getFrame()
60 curMax = float(np.max(npDisparity))
61 if curMax > 0:
62 maxDisparity = max(maxDisparity, curMax)
63 normalized = (npDisparity / (maxDisparity if maxDisparity > 0 else 1.0) * 255.0).astype(np.uint8)
64 colorizedDisparity = cv2.applyColorMap(normalized, cv2.COLORMAP_JET)
65 colorizedDisparity[normalized == 0] = (0, 0, 0)
66 cv2.imshow("disparity", colorizedDisparity)
67
68 # --- Load one frame into calibration & read coverage
69 dynCalibInputControl.send(dai.DynamicCalibrationControl(dai.DynamicCalibrationControl.Commands.LoadImage()))
70 coverage = dynCalibCoverageQueue.get()
71 if coverage is not None:
72 print(f"2D Spatial Coverage = {coverage.meanCoverage} / 100 [%]")
73 print(f"Data Acquired = {coverage.dataAcquired} / 100 [%]")
74
75 # --- Request a quality evaluation & read result
76 dynCalibInputControl.send(dai.DynamicCalibrationControl(dai.DynamicCalibrationControl.Commands.CalibrationQuality(False)))
77 dynQualityResult = dynCalibQualityQueue.get()
78 if dynQualityResult is not None:
79 print(f"Dynamic calibration status: {dynQualityResult.info}")
80
81 # If the calibration is successfully returned apply it to the device
82 if dynQualityResult.qualityData:
83 q = dynQualityResult.qualityData
84 print("Successfully evaluated Quality")
85 rotDiff = float(np.sqrt(q.rotationChange[0]**2 +
86 q.rotationChange[1]**2 +
87 q.rotationChange[2]**2))
88 print(f"Rotation difference: || r_current - r_new || = {rotDiff:.2f} deg")
89 print(f"Mean Sampson error achievable = {q.sampsonErrorNew:.3f} px")
90 print(f"Mean Sampson error current = {q.sampsonErrorCurrent:.3f} px")
91 print(
92 "Theoretical Depth Error Difference "
93 f"@1m:{q.depthErrorDifference[0]:.2f}%, "
94 f"2m:{q.depthErrorDifference[1]:.2f}%, "
95 f"5m:{q.depthErrorDifference[2]:.2f}%, "
96 f"10m:{q.depthErrorDifference[3]:.2f}%"
97 )
98 # Reset temporary accumulators before the next cycle
99 dynCalibInputControl.send(dai.DynamicCalibrationControl(dai.DynamicCalibrationControl.Commands.ResetData()))
100
101 key = cv2.waitKey(1)
102 if key == ord('q'):
103 pipeline.stop()
104 break
Dynamic Calibration
Python
C++
Python
Run this example by following the README on Github.PythonGitHub
1import depthai as dai
2import numpy as np
3import time
4import cv2
5
6# ---------- Pipeline definition ----------
7with dai.Pipeline() as pipeline:
8 # Cameras
9 monoLeft = pipeline.create(dai.node.Camera).build(dai.CameraBoardSocket.CAM_B)
10 monoRight = pipeline.create(dai.node.Camera).build(dai.CameraBoardSocket.CAM_C)
11
12 # Full-res NV12 outputs
13 monoLeftOut = monoLeft.requestFullResolutionOutput(dai.ImgFrame.Type.NV12)
14 monoRightOut = monoRight.requestFullResolutionOutput(dai.ImgFrame.Type.NV12)
15
16 # Initialize the DynamicCalibration node
17 dynCalib = pipeline.create(dai.node.DynamicCalibration)
18
19 # Link the cameras to the DynamicCalibration
20 monoLeftOut.link(dynCalib.left)
21 monoRightOut.link(dynCalib.right)
22
23 # Stereo (for disparity + synced previews)
24 stereo = pipeline.create(dai.node.StereoDepth)
25 monoLeftOut.link(stereo.left)
26 monoRightOut.link(stereo.right)
27
28 # Output queues
29 syncedLeftQueue = stereo.syncedLeft.createOutputQueue()
30 syncedRightQueue = stereo.syncedRight.createOutputQueue()
31 disparityQueue = stereo.disparity.createOutputQueue()
32
33 # Initialize the command output queues for calibration and coverage
34 dynCalibCalibrationQueue = dynCalib.calibrationOutput.createOutputQueue()
35 dynCalibCoverageQueue = dynCalib.coverageOutput.createOutputQueue()
36
37 # Initialize the command input queue
38 dynCalibInputControl = dynCalib.inputControl.createInputQueue()
39
40 device = pipeline.getDefaultDevice()
41 device.setCalibration(device.readCalibration())
42
43 # Setup the colormap for visualization
44 colorMap = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_JET)
45 colorMap[0] = [0, 0, 0] # to make zero-disparity pixels black
46 maxDisparity = 1.0
47
48 pipeline.start()
49 time.sleep(1) # wait for auto exposure to settle
50
51 # Set performance mode
52 dynCalibInputControl.send(
53 dai.DynamicCalibrationControl(dai.DynamicCalibrationControl.Commands.SetPerformanceMode(
54 dai.node.DynamicCalibration.OPTIMIZE_PERFORMANCE)
55 )
56 )
57
58 # Start periodic calibration
59 dynCalibInputControl.send(
60 dai.DynamicCalibrationControl(dai.DynamicCalibrationControl.Commands.StartCalibration())
61 )
62
63 while pipeline.isRunning():
64 leftSynced = syncedLeftQueue.get()
65 rightSynced = syncedRightQueue.get()
66 disparity = disparityQueue.get()
67
68 cv2.imshow("left", leftSynced.getCvFrame())
69 cv2.imshow("right", rightSynced.getCvFrame())
70
71 # --- Disparity visualization ---
72 npDisparity = disparity.getFrame()
73 curMax = float(np.max(npDisparity))
74 if curMax > 0:
75 maxDisparity = max(maxDisparity, curMax)
76
77 # Normalize to [0,255] and colorize; keep zero-disparity as black
78 denom = maxDisparity if maxDisparity > 0 else 1.0
79 normalized = (npDisparity / denom * 255.0).astype(np.uint8)
80 colorizedDisparity = cv2.applyColorMap(normalized, cv2.COLORMAP_JET)
81 colorizedDisparity[normalized == 0] = (0, 0, 0)
82 cv2.imshow("disparity", colorizedDisparity)
83
84 # --- Coverage (non-blocking) ---
85 coverage = dynCalibCoverageQueue.tryGet()
86 if coverage is not None:
87 print(f"2D Spatial Coverage = {coverage.meanCoverage} / 100 [%]")
88 print(f"Data Acquired = {coverage.dataAcquired} / 100 [%]")
89
90 # --- Calibration result (non-blocking) ---
91 dynCalibrationResult = dynCalibCalibrationQueue.tryGet()
92 calibrationData = dynCalibrationResult.calibrationData if dynCalibrationResult is not None else None
93
94 if dynCalibrationResult is not None:
95 print(f"Dynamic calibration status: {dynCalibrationResult.info}")
96
97 # --- Apply calibration if available, print quality deltas, then reset+continue ---
98 if calibrationData:
99 print("Successfully calibrated")
100 # Apply to device
101 dynCalibInputControl.send(
102 dai.DynamicCalibrationControl(
103 dai.DynamicCalibrationControl.Commands.ApplyCalibration(calibrationData.newCalibration)
104 )
105 )
106
107 q = calibrationData.calibrationDifference
108 rotDiff = float(np.sqrt(q.rotationChange[0]**2 +
109 q.rotationChange[1]**2 +
110 q.rotationChange[2]**2))
111 print(f"Rotation difference: || r_current - r_new || = {rotDiff:.2f} deg")
112 print(f"Mean Sampson error achievable = {q.sampsonErrorNew:.3f} px")
113 print(f"Mean Sampson error current = {q.sampsonErrorCurrent:.3f} px")
114 print("Theoretical Depth Error Difference "
115 f"@1m:{q.depthErrorDifference[0]:.2f}%, "
116 f"2m:{q.depthErrorDifference[1]:.2f}%, "
117 f"5m:{q.depthErrorDifference[2]:.2f}%, "
118 f"10m:{q.depthErrorDifference[3]:.2f}%")
119
120 # Reset accumulators and continue periodic calibration
121 dynCalibInputControl.send(
122 dai.DynamicCalibrationControl(dai.DynamicCalibrationControl.Commands.ResetData())
123 )
124 dynCalibInputControl.send(
125 dai.DynamicCalibrationControl(dai.DynamicCalibrationControl.Commands.StartCalibration())
126 )
127
128 key = cv2.waitKey(1)
129 if key == ord('q'):
130 pipeline.stop()
131 break
Dynamic Calibration will not fully restore the factory-specified absolute depth accuracy. Use factory tools for production-grade re-calibration.
Performance & scenery guidelines
Capture a diverse scene
- Include textured objects at multiple depths.
- Avoid blank walls or featureless surfaces.
- Slowly move the camera to cover the full FOV; avoid sudden motions.
Suitable Scenes for Calibration
Good calibration scenes make it easier for algorithms to detect, match, and track features. Recommended characteristics:- Rich texture: Surfaces with varied colors/details (e.g., brick, bark, bookshelves).
- Matte, opaque materials: Non-reflective surfaces like wood, paper, fabric, stone.
- Unique patterns: Irregular, distinctive objects—avoid repetitive structures.
- Even lighting: Diffuse daylight or soft ambient light to reduce shadows/glare.
- Structured details: Edges, corners, and small landmarks spread across depths.
PerformanceMode tuning
Mode | When to use |
---|---|
DEFAULT | Balanced accuracy vs. speed. |
STATIC_SCENERY | Camera is fixed, scene stable. |
OPTIMIZE_SPEED | Fastest calibration, reduced precision. |
OPTIMIZE_PERFORMANCE | Maximum precision in feature-rich scenes. |
SKIP_CHECKS | Automated pipelines, were internal check to guarantee scene quality are ignored. |
For highest accuracy, combine OPTIMIZE_PERFORMANCE with a dynamic, well-featured environment.
Best Practices
For high-accuracy calibration:- Use
OPTIMIZE_PERFORMANCE
with a dynamic, well-featured scene. - Use
STATIC_SCENERY
if the camera is fixed and viewing a stable, structured environment. - Use
SKIP_CHECKS
only in automated workflows where scenery quality is externally validated.
Limitations & notes
- Supported devices — Dynamic Calibration is available for:
- All stereo OAK Series 2 cameras (excluding FFC)
- All stereo OAK Series 4 cameras
- DepthAI version — requires DepthAI 3.0 or later.
- Re-calibrated parameters — updates extrinsics only; intrinsics remain unchanged.
- OS support — Available on Linux, MacOS and Windows.
- Absolute depth spec — DCL improves relative depth perception; absolute accuracy may still differ slightly from the original factory spec.
Troubleshooting
Symptom | Possible cause | Fix |
---|---|---|
High reprojection error | Incorrect model name or HFOV in board config | Verify board JSON and camera specs |
Depth still incorrect after “successful” DCL | Left / right cameras swapped | Swap sockets or update board config and recalibrate |
nullopt quality report | Insufficient scene coverage | Move camera to capture richer textures |
Runtime error: "The calibration on the device is too old to perform DynamicCalibration, full re-calibration required!" | The device calibration is too outdated for dynamic recalibration to provide any benefit. | A newer device is needed |