26.3 - RGB & TinyYolo with spatial data

This example shows how to run TinyYoloV3 and v4 on the RGB input frame, and how to display both the RGB preview, detections, depth map and spatial information (X,Y,Z). It’s similar to example ‘26_1_spatial_mobilenet’ except it is running TinyYolo network. X,Y,Z coordinates are relative to the center of depth map.

setNumClasses - number of YOLO classes setCoordinateSize - size of coordinate setAnchors - yolo anchors setAnchorMasks - anchorMasks26, anchorMasks13 (anchorMasks52 - additionally for full YOLOv4) setIouThreshold - intersection over union threshold setConfidenceThreshold - confidence threshold above which objects are detected

Demo

Setup

Please run the following command to install the required dependencies

 python3 -m pip install -U pip
 python3 -m pip install opencv-python
 python3 -m pip install -U --force-reinstall depthai

For additional information, please follow installation guide

This example also requires YOLOv4-tiny blob (tiny-yolo-v4_openvino_2021.2_6shave.blob file) to work - you can download it from here

YOLOv3-tiny blob (tiny-yolo-v3_openvino_2021.2_6shave.blob file) can be used too - you can download it from here

Source code

Also available on GitHub

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python3

from pathlib import Path
import sys
import cv2
import depthai as dai
import numpy as np
import time

'''
Spatial Tiny-yolo example
  Performs inference on RGB camera and retrieves spatial location coordinates: x,y,z relative to the center of depth map.
  Can be used for tiny-yolo-v3 or tiny-yolo-v4 networks
'''

# Tiny yolo v3/4 label texts
labelMap = [
    "person",         "bicycle",    "car",           "motorbike",     "aeroplane",   "bus",           "train",
    "truck",          "boat",       "traffic light", "fire hydrant",  "stop sign",   "parking meter", "bench",
    "bird",           "cat",        "dog",           "horse",         "sheep",       "cow",           "elephant",
    "bear",           "zebra",      "giraffe",       "backpack",      "umbrella",    "handbag",       "tie",
    "suitcase",       "frisbee",    "skis",          "snowboard",     "sports ball", "kite",          "baseball bat",
    "baseball glove", "skateboard", "surfboard",     "tennis racket", "bottle",      "wine glass",    "cup",
    "fork",           "knife",      "spoon",         "bowl",          "banana",      "apple",         "sandwich",
    "orange",         "broccoli",   "carrot",        "hot dog",       "pizza",       "donut",         "cake",
    "chair",          "sofa",       "pottedplant",   "bed",           "diningtable", "toilet",        "tvmonitor",
    "laptop",         "mouse",      "remote",        "keyboard",      "cell phone",  "microwave",     "oven",
    "toaster",        "sink",       "refrigerator",  "book",          "clock",       "vase",          "scissors",
    "teddy bear",     "hair drier", "toothbrush"
]

syncNN = True

# Get argument first
nnBlobPath = str((Path(__file__).parent / Path('models/tiny-yolo-v4_openvino_2021.2_6shave.blob')).resolve().absolute())
if len(sys.argv) > 1:
    nnBlobPath = sys.argv[1]

if not Path(nnBlobPath).exists():
    import sys
    raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')

# Start defining a pipeline
pipeline = dai.Pipeline()

# Define a source - color camera
colorCam = pipeline.createColorCamera()
spatialDetectionNetwork = pipeline.createYoloSpatialDetectionNetwork()
monoLeft = pipeline.createMonoCamera()
monoRight = pipeline.createMonoCamera()
stereo = pipeline.createStereoDepth()

xoutRgb = pipeline.createXLinkOut()
xoutNN = pipeline.createXLinkOut()
xoutBoundingBoxDepthMapping = pipeline.createXLinkOut()
xoutDepth = pipeline.createXLinkOut()

xoutRgb.setStreamName("rgb")
xoutNN.setStreamName("detections")
xoutBoundingBoxDepthMapping.setStreamName("boundingBoxDepthMapping")
xoutDepth.setStreamName("depth")


colorCam.setPreviewSize(416, 416)
colorCam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
colorCam.setInterleaved(False)
colorCam.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)

monoLeft.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoLeft.setBoardSocket(dai.CameraBoardSocket.LEFT)
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)

# setting node configs
stereo.setConfidenceThreshold(255)

spatialDetectionNetwork.setBlobPath(nnBlobPath)
spatialDetectionNetwork.setConfidenceThreshold(0.5)
spatialDetectionNetwork.input.setBlocking(False)
spatialDetectionNetwork.setBoundingBoxScaleFactor(0.5)
spatialDetectionNetwork.setDepthLowerThreshold(100)
spatialDetectionNetwork.setDepthUpperThreshold(5000)
# Yolo specific parameters
spatialDetectionNetwork.setNumClasses(80)
spatialDetectionNetwork.setCoordinateSize(4)
spatialDetectionNetwork.setAnchors(np.array([10,14, 23,27, 37,58, 81,82, 135,169, 344,319]))
spatialDetectionNetwork.setAnchorMasks({ "side26": np.array([1,2,3]), "side13": np.array([3,4,5]) })
spatialDetectionNetwork.setIouThreshold(0.5)

# Create outputs

monoLeft.out.link(stereo.left)
monoRight.out.link(stereo.right)

colorCam.preview.link(spatialDetectionNetwork.input)
if syncNN:
    spatialDetectionNetwork.passthrough.link(xoutRgb.input)
else:
    colorCam.preview.link(xoutRgb.input)

spatialDetectionNetwork.out.link(xoutNN.input)
spatialDetectionNetwork.boundingBoxMapping.link(xoutBoundingBoxDepthMapping.input)

stereo.depth.link(spatialDetectionNetwork.inputDepth)
spatialDetectionNetwork.passthroughDepth.link(xoutDepth.input)

# Connect and start the pipeline
with dai.Device(pipeline) as device:

    # Output queues will be used to get the rgb frames and nn data from the outputs defined above
    previewQueue = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
    detectionNNQueue = device.getOutputQueue(name="detections", maxSize=4, blocking=False)
    xoutBoundingBoxDepthMapping = device.getOutputQueue(name="boundingBoxDepthMapping", maxSize=4, blocking=False)
    depthQueue = device.getOutputQueue(name="depth", maxSize=4, blocking=False)

    frame = None
    detections = []

    startTime = time.monotonic()
    counter = 0
    fps = 0
    color = (255, 255, 255)

    while True:
        inPreview = previewQueue.get()
        inNN = detectionNNQueue.get()
        depth = depthQueue.get()

        counter+=1
        current_time = time.monotonic()
        if (current_time - startTime) > 1 :
            fps = counter / (current_time - startTime)
            counter = 0
            startTime = current_time

        frame = inPreview.getCvFrame()
        depthFrame = depth.getFrame()

        depthFrameColor = cv2.normalize(depthFrame, None, 255, 0, cv2.NORM_INF, cv2.CV_8UC1)
        depthFrameColor = cv2.equalizeHist(depthFrameColor)
        depthFrameColor = cv2.applyColorMap(depthFrameColor, cv2.COLORMAP_HOT)
        detections = inNN.detections
        if len(detections) != 0:
            boundingBoxMapping = xoutBoundingBoxDepthMapping.get()
            roiDatas = boundingBoxMapping.getConfigData()

            for roiData in roiDatas:
                roi = roiData.roi
                roi = roi.denormalize(depthFrameColor.shape[1], depthFrameColor.shape[0])
                topLeft = roi.topLeft()
                bottomRight = roi.bottomRight()
                xmin = int(topLeft.x)
                ymin = int(topLeft.y)
                xmax = int(bottomRight.x)
                ymax = int(bottomRight.y)

                cv2.rectangle(depthFrameColor, (xmin, ymin), (xmax, ymax), color, cv2.FONT_HERSHEY_SCRIPT_SIMPLEX)


        # If the frame is available, draw bounding boxes on it and show the frame
        height = frame.shape[0]
        width  = frame.shape[1]
        for detection in detections:
            # Denormalize bounding box
            x1 = int(detection.xmin * width)
            x2 = int(detection.xmax * width)
            y1 = int(detection.ymin * height)
            y2 = int(detection.ymax * height)
            try:
                label = labelMap[detection.label]
            except:
                label = detection.label
            cv2.putText(frame, str(label), (x1 + 10, y1 + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
            cv2.putText(frame, "{:.2f}".format(detection.confidence*100), (x1 + 10, y1 + 35), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
            cv2.putText(frame, f"X: {int(detection.spatialCoordinates.x)} mm", (x1 + 10, y1 + 50), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
            cv2.putText(frame, f"Y: {int(detection.spatialCoordinates.y)} mm", (x1 + 10, y1 + 65), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
            cv2.putText(frame, f"Z: {int(detection.spatialCoordinates.z)} mm", (x1 + 10, y1 + 80), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)

            cv2.rectangle(frame, (x1, y1), (x2, y2), color, cv2.FONT_HERSHEY_SIMPLEX)

        cv2.putText(frame, "NN fps: {:.2f}".format(fps), (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color)
        cv2.imshow("depth", depthFrameColor)
        cv2.imshow("rgb", frame)

        if cv2.waitKey(1) == ord('q'):
            break

Got questions?

We’re always happy to help with code or other questions you might have.