Casting NN Concatenation
This example demonstrates how to concatenate frames from multiple cameras (RGB, left, and right) using a NeuralNetwork and the Cast node.Demo
Setup
Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the scriptCommand Line
1git clone https://github.com/luxonis/depthai-python.git
2cd depthai-python/examples
3python3 install_requirements.py
Source code
Python
C++
Python
PythonGitHub
1import numpy as np
2import cv2
3import depthai as dai
4from pathlib import Path
5
6SHAPE = 300
7
8p = dai.Pipeline()
9
10camRgb = p.create(dai.node.ColorCamera)
11left = p.create(dai.node.MonoCamera)
12right = p.create(dai.node.MonoCamera)
13manipLeft = p.create(dai.node.ImageManip)
14manipRight = p.create(dai.node.ImageManip)
15nn = p.create(dai.node.NeuralNetwork)
16cast = p.create(dai.node.Cast)
17castXout = p.create(dai.node.XLinkOut)
18
19camRgb.setPreviewSize(SHAPE, SHAPE)
20camRgb.setInterleaved(False)
21camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)
22
23left.setCamera("left")
24left.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
25manipLeft.initialConfig.setResize(SHAPE, SHAPE)
26manipLeft.initialConfig.setFrameType(dai.ImgFrame.Type.BGR888p)
27
28right.setCamera("right")
29right.setResolution(dai.MonoCameraProperties.SensorResolution.THE_400_P)
30manipRight.initialConfig.setResize(SHAPE, SHAPE)
31manipRight.initialConfig.setFrameType(dai.ImgFrame.Type.BGR888p)
32
33nnBlobPath = (Path(__file__).parent / Path('../models/concat_openvino_2021.4_6shave.blob')).resolve().absolute()
34nn.setBlobPath(nnBlobPath)
35nn.setNumInferenceThreads(2)
36
37castXout.setStreamName("cast")
38cast.setOutputFrameType(dai.ImgFrame.Type.BGR888p)
39
40# Linking
41left.out.link(manipLeft.inputImage)
42right.out.link(manipRight.inputImage)
43manipLeft.out.link(nn.inputs['img1'])
44camRgb.preview.link(nn.inputs['img2'])
45manipRight.out.link(nn.inputs['img3'])
46nn.out.link(cast.input)
47cast.output.link(castXout.input)
48
49# Pipeline is defined, now we can connect to the device
50with dai.Device(p) as device:
51 qCast = device.getOutputQueue(name="cast", maxSize=4, blocking=False)
52
53 while True:
54 inCast = qCast.get()
55 assert isinstance(inCast, dai.ImgFrame)
56 cv2.imshow("Concated frames", inCast.getCvFrame())
57
58 if cv2.waitKey(1) == ord('q'):
59 break
Pipeline
Need assistance?
Head over to Discussion Forum for technical support or any other questions you might have.