DepthAI Tutorials
DepthAI API References

ON THIS PAGE

  • RGB Encoding & Mono & MobilenetSSD
  • Similar samples:
  • Demo
  • Setup
  • Source code
  • Pipeline

RGB Encoding & Mono & MobilenetSSD

This example shows how to configure the depthai video encoder in h.265 format to encode the RGB camera input at Full-HD resolution at 30FPS, and transfers the encoded video over XLINK to the host, saving it to disk as a video file. At the same time, a MobileNetv2SSD network is ran on the frames from right grayscale cameraPressing Ctrl+C will stop the recording and then convert it using ffmpeg into an mp4 to make it playable. Note that ffmpeg will need to be installed and runnable for the conversion to mp4 to succeed.Be careful, this example saves encoded video to your host storage. So if you leave it running, you could fill up your storage on your host.It's a combination of RGB Encoding and Mono & MobilenetSSD.

Similar samples:

Demo

Setup

Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script
Command Line
1git clone https://github.com/luxonis/depthai-python.git
2cd depthai-python/examples
3python3 install_requirements.py
For additional information, please follow the installation guide.

Source code

Python
C++

Python

Python
GitHub
1#!/usr/bin/env python3
2
3from pathlib import Path
4import sys
5import cv2
6import depthai as dai
7import numpy as np
8
9# Get argument first
10nnPath = str((Path(__file__).parent / Path('../models/mobilenet-ssd_openvino_2021.4_6shave.blob')).resolve().absolute())
11if len(sys.argv) > 1:
12    nnPath = sys.argv[1]
13
14if not Path(nnPath).exists():
15    import sys
16    raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
17
18# MobilenetSSD label texts
19labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
20            "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
21
22# Create pipeline
23pipeline = dai.Pipeline()
24
25# Define sources and outputs
26camRgb = pipeline.create(dai.node.ColorCamera)
27monoRight = pipeline.create(dai.node.MonoCamera)
28videoEncoder = pipeline.create(dai.node.VideoEncoder)
29nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
30manip = pipeline.create(dai.node.ImageManip)
31
32videoOut = pipeline.create(dai.node.XLinkOut)
33xoutRight = pipeline.create(dai.node.XLinkOut)
34manipOut = pipeline.create(dai.node.XLinkOut)
35nnOut = pipeline.create(dai.node.XLinkOut)
36
37videoOut.setStreamName('h265')
38xoutRight.setStreamName("right")
39manipOut.setStreamName("manip")
40nnOut.setStreamName("nn")
41
42# Properties
43camRgb.setBoardSocket(dai.CameraBoardSocket.CAM_A)
44camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
45monoRight.setCamera("right")
46monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P)
47videoEncoder.setDefaultProfilePreset(30, dai.VideoEncoderProperties.Profile.H265_MAIN)
48
49nn.setConfidenceThreshold(0.5)
50nn.setBlobPath(nnPath)
51nn.setNumInferenceThreads(2)
52nn.input.setBlocking(False)
53
54# The NN model expects BGR input. By default ImageManip output type would be same as input (gray in this case)
55manip.initialConfig.setFrameType(dai.ImgFrame.Type.BGR888p)
56manip.initialConfig.setResize(300, 300)
57
58# Linking
59camRgb.video.link(videoEncoder.input)
60videoEncoder.bitstream.link(videoOut.input)
61monoRight.out.link(manip.inputImage)
62manip.out.link(nn.input)
63monoRight.out.link(xoutRight.input)
64manip.out.link(manipOut.input)
65nn.out.link(nnOut.input)
66
67# Connect to device and start pipeline
68with dai.Device(pipeline) as device:
69
70    # Queues
71    queue_size = 8
72    qRight = device.getOutputQueue("right", queue_size)
73    qManip = device.getOutputQueue("manip", queue_size)
74    qDet = device.getOutputQueue("nn", queue_size)
75    qRgbEnc = device.getOutputQueue('h265', maxSize=30, blocking=True)
76
77    frame = None
78    frameManip = None
79    detections = []
80    offsetX = (monoRight.getResolutionWidth() - monoRight.getResolutionHeight()) // 2
81    color = (255, 0, 0)
82    croppedFrame = np.zeros((monoRight.getResolutionHeight(), monoRight.getResolutionHeight()))
83
84    def frameNorm(frame, bbox):
85        normVals = np.full(len(bbox), frame.shape[0])
86        normVals[::2] = frame.shape[1]
87        return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
88
89    videoFile = open('video.h265', 'wb')
90    cv2.namedWindow("right", cv2.WINDOW_NORMAL)
91    cv2.namedWindow("manip", cv2.WINDOW_NORMAL)
92
93    while True:
94        inRight = qRight.tryGet()
95        inManip = qManip.tryGet()
96        inDet = qDet.tryGet()
97
98        while qRgbEnc.has():
99            qRgbEnc.get().getData().tofile(videoFile)
100
101        if inRight is not None:
102            frame = inRight.getCvFrame()
103
104        if inManip is not None:
105            frameManip = inManip.getCvFrame()
106
107        if inDet is not None:
108            detections = inDet.detections
109
110        if frame is not None:
111            for detection in detections:
112                bbox = frameNorm(croppedFrame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
113                bbox[::2] += offsetX
114                cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
115                cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
116                cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
117            # Show the frame
118            cv2.imshow("right", frame)
119
120        if frameManip is not None:
121            for detection in detections:
122                bbox = frameNorm(frameManip, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
123                cv2.putText(frameManip, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
124                cv2.putText(frameManip, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
125                cv2.rectangle(frameManip, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
126            # Show the frame
127            cv2.imshow("manip", frameManip)
128
129        if cv2.waitKey(1) == ord('q'):
130            break
131
132    print("To view the encoded data, convert the stream file (.h265) into a video file (.mp4) using a command below:")
133    print("ffmpeg -framerate 30 -i video.h265 -c copy video.mp4")

Pipeline

Need assistance?

Head over to Discussion Forum for technical support or any other questions you might have.