RGB & MobileNetSSD @ 4K
Similar samples:
Demo
Setup
Command Line
1git clone https://github.com/luxonis/depthai-python.git
2cd depthai-python/examples
3python3 install_requirements.pySource code
Python
C++
Python
PythonGitHub
1#!/usr/bin/env python3
2
3from pathlib import Path
4import sys
5import cv2
6import depthai as dai
7import numpy as np
8
9# Get argument first
10nnPath = str((Path(__file__).parent / Path('../models/mobilenet-ssd_openvino_2021.4_5shave.blob')).resolve().absolute())
11if len(sys.argv) > 1:
12 nnPath = sys.argv[1]
13
14if not Path(nnPath).exists():
15 import sys
16 raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
17
18# MobilenetSSD label texts
19labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
20 "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
21
22# Create pipeline
23pipeline = dai.Pipeline()
24
25# Define sources and outputs
26camRgb = pipeline.create(dai.node.ColorCamera)
27nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
28
29xoutVideo = pipeline.create(dai.node.XLinkOut)
30xoutPreview = pipeline.create(dai.node.XLinkOut)
31nnOut = pipeline.create(dai.node.XLinkOut)
32
33xoutVideo.setStreamName("video")
34xoutPreview.setStreamName("preview")
35nnOut.setStreamName("nn")
36
37# Properties
38camRgb.setPreviewSize(300, 300) # NN input
39camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_4_K)
40camRgb.setInterleaved(False)
41camRgb.setPreviewKeepAspectRatio(False)
42# Define a neural network that will make predictions based on the source frames
43nn.setConfidenceThreshold(0.5)
44nn.setBlobPath(nnPath)
45nn.setNumInferenceThreads(2)
46nn.input.setBlocking(False)
47
48# Linking
49camRgb.video.link(xoutVideo.input)
50camRgb.preview.link(xoutPreview.input)
51camRgb.preview.link(nn.input)
52nn.out.link(nnOut.input)
53
54# Connect to device and start pipeline
55with dai.Device(pipeline) as device:
56
57 # Output queues will be used to get the frames and nn data from the outputs defined above
58 qVideo = device.getOutputQueue(name="video", maxSize=4, blocking=False)
59 qPreview = device.getOutputQueue(name="preview", maxSize=4, blocking=False)
60 qDet = device.getOutputQueue(name="nn", maxSize=4, blocking=False)
61
62 previewFrame = None
63 videoFrame = None
64 detections = []
65
66 # nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height
67 def frameNorm(frame, bbox):
68 normVals = np.full(len(bbox), frame.shape[0])
69 normVals[::2] = frame.shape[1]
70 return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
71
72 def displayFrame(name, frame):
73 color = (255, 0, 0)
74 for detection in detections:
75 bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
76 cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
77 cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)
78 cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
79 # Show the frame
80 cv2.imshow(name, frame)
81
82 cv2.namedWindow("video", cv2.WINDOW_NORMAL)
83 cv2.resizeWindow("video", 1280, 720)
84 print("Resize video window with mouse drag!")
85
86 while True:
87 # Instead of get (blocking), we use tryGet (non-blocking) which will return the available data or None otherwise
88 inVideo = qVideo.tryGet()
89 inPreview = qPreview.tryGet()
90 inDet = qDet.tryGet()
91
92 if inVideo is not None:
93 videoFrame = inVideo.getCvFrame()
94
95 if inPreview is not None:
96 previewFrame = inPreview.getCvFrame()
97
98 if inDet is not None:
99 detections = inDet.detections
100
101 if videoFrame is not None:
102 displayFrame("video", videoFrame)
103
104 if previewFrame is not None:
105 displayFrame("preview", previewFrame)
106
107 if cv2.waitKey(1) == ord('q'):
108 breakPipeline
Need assistance?
Head over to Discussion Forum for technical support or any other questions you might have.