DepthAI Tutorials
DepthAI API References

ON THIS PAGE

  • RGB & Tiny YOLO
  • Demo
  • Setup
  • Source code
  • Pipeline

RGB & Tiny YOLO

This example shows how to run YOLO on the RGB input frame, and how to display both the RGB preview and the metadata results from the YOLO model on the preview. Decoding is done on the RVC instead on the host computer.Configurable, network dependent parameters are required for correct decoding:
  • setNumClasses - number of YOLO classes
  • setCoordinateSize - size of coordinate
  • setAnchors - yolo anchors
  • setAnchorMasks - anchorMasks26, anchorMasks13 (anchorMasks52 - additionally for full YOLOv4)
  • setIouThreshold - intersection over union threshold
  • setConfidenceThreshold - confidence threshold above which objects are detected
By default, Tiny YOLOv4 is used. You can add yolo3 as a CMD argument to use Tiny YOLOv3.

Demo

Setup

Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai-python repository first and then run the script
Command Line
1git clone https://github.com/luxonis/depthai-python.git
2cd depthai-python/examples
3python3 install_requirements.py
For additional information, please follow the installation guide.

Source code

Python
C++

Python

Python
GitHub
1#!/usr/bin/env python3
2
3"""
4The code is the same as for Tiny Yolo V3 and V4, the only difference is the blob file
5- Tiny YOLOv3: https://github.com/david8862/keras-YOLOv3-model-set
6- Tiny YOLOv4: https://github.com/TNTWEN/OpenVINO-YOLOV4
7"""
8
9from pathlib import Path
10import sys
11import cv2
12import depthai as dai
13import numpy as np
14import time
15
16# Get argument first
17nnPath = str((Path(__file__).parent / Path('../models/yolo-v4-tiny-tf_openvino_2021.4_6shave.blob')).resolve().absolute())
18if 1 < len(sys.argv):
19    arg = sys.argv[1]
20    if arg == "yolo3":
21        nnPath = str((Path(__file__).parent / Path('../models/yolo-v3-tiny-tf_openvino_2021.4_6shave.blob')).resolve().absolute())
22    elif arg == "yolo4":
23        nnPath = str((Path(__file__).parent / Path('../models/yolo-v4-tiny-tf_openvino_2021.4_6shave.blob')).resolve().absolute())
24    else:
25        nnPath = arg
26else:
27    print("Using Tiny YoloV4 model. If you wish to use Tiny YOLOv3, call 'tiny_yolo.py yolo3'")
28
29if not Path(nnPath).exists():
30    import sys
31    raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
32
33# tiny yolo v4 label texts
34labelMap = [
35    "person",         "bicycle",    "car",           "motorbike",     "aeroplane",   "bus",           "train",
36    "truck",          "boat",       "traffic light", "fire hydrant",  "stop sign",   "parking meter", "bench",
37    "bird",           "cat",        "dog",           "horse",         "sheep",       "cow",           "elephant",
38    "bear",           "zebra",      "giraffe",       "backpack",      "umbrella",    "handbag",       "tie",
39    "suitcase",       "frisbee",    "skis",          "snowboard",     "sports ball", "kite",          "baseball bat",
40    "baseball glove", "skateboard", "surfboard",     "tennis racket", "bottle",      "wine glass",    "cup",
41    "fork",           "knife",      "spoon",         "bowl",          "banana",      "apple",         "sandwich",
42    "orange",         "broccoli",   "carrot",        "hot dog",       "pizza",       "donut",         "cake",
43    "chair",          "sofa",       "pottedplant",   "bed",           "diningtable", "toilet",        "tvmonitor",
44    "laptop",         "mouse",      "remote",        "keyboard",      "cell phone",  "microwave",     "oven",
45    "toaster",        "sink",       "refrigerator",  "book",          "clock",       "vase",          "scissors",
46    "teddy bear",     "hair drier", "toothbrush"
47]
48
49syncNN = True
50
51# Create pipeline
52pipeline = dai.Pipeline()
53
54# Define sources and outputs
55camRgb = pipeline.create(dai.node.ColorCamera)
56detectionNetwork = pipeline.create(dai.node.YoloDetectionNetwork)
57xoutRgb = pipeline.create(dai.node.XLinkOut)
58nnOut = pipeline.create(dai.node.XLinkOut)
59
60xoutRgb.setStreamName("rgb")
61nnOut.setStreamName("nn")
62
63# Properties
64camRgb.setPreviewSize(416, 416)
65camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
66camRgb.setInterleaved(False)
67camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)
68camRgb.setFps(40)
69
70# Network specific settings
71detectionNetwork.setConfidenceThreshold(0.5)
72detectionNetwork.setNumClasses(80)
73detectionNetwork.setCoordinateSize(4)
74detectionNetwork.setAnchors([10, 14, 23, 27, 37, 58, 81, 82, 135, 169, 344, 319])
75detectionNetwork.setAnchorMasks({"side26": [1, 2, 3], "side13": [3, 4, 5]})
76detectionNetwork.setIouThreshold(0.5)
77detectionNetwork.setBlobPath(nnPath)
78detectionNetwork.setNumInferenceThreads(2)
79detectionNetwork.input.setBlocking(False)
80
81# Linking
82camRgb.preview.link(detectionNetwork.input)
83if syncNN:
84    detectionNetwork.passthrough.link(xoutRgb.input)
85else:
86    camRgb.preview.link(xoutRgb.input)
87
88detectionNetwork.out.link(nnOut.input)
89
90# Connect to device and start pipeline
91with dai.Device(pipeline) as device:
92
93    # Output queues will be used to get the rgb frames and nn data from the outputs defined above
94    qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
95    qDet = device.getOutputQueue(name="nn", maxSize=4, blocking=False)
96
97    frame = None
98    detections = []
99    startTime = time.monotonic()
100    counter = 0
101    color2 = (255, 255, 255)
102
103    # nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height
104    def frameNorm(frame, bbox):
105        normVals = np.full(len(bbox), frame.shape[0])
106        normVals[::2] = frame.shape[1]
107        return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
108
109    def displayFrame(name, frame):
110        color = (255, 0, 0)
111        for detection in detections:
112            bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
113            cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
114            cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
115            cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
116        # Show the frame
117        cv2.imshow(name, frame)
118
119    while True:
120        if syncNN:
121            inRgb = qRgb.get()
122            inDet = qDet.get()
123        else:
124            inRgb = qRgb.tryGet()
125            inDet = qDet.tryGet()
126
127        if inRgb is not None:
128            frame = inRgb.getCvFrame()
129            cv2.putText(frame, "NN fps: {:.2f}".format(counter / (time.monotonic() - startTime)),
130                        (2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color2)
131
132        if inDet is not None:
133            detections = inDet.detections
134            counter += 1
135
136        if frame is not None:
137            displayFrame("rgb", frame)
138
139        if cv2.waitKey(1) == ord('q'):
140            break

Pipeline

Need assistance?

Head over to Discussion Forum for technical support or any other questions you might have.