Video & MobilenetSSD
Similar samples:
Demo
Setup
Command Line
1git clone https://github.com/luxonis/depthai-python.git
2cd depthai-python/examples
3python3 install_requirements.pySource code
Python
C++
Python
PythonGitHub
1#!/usr/bin/env python3
2
3from pathlib import Path
4import sys
5import cv2
6import depthai as dai
7import numpy as np
8from time import monotonic
9
10# Get argument first
11parentDir = Path(__file__).parent
12nnPath = str((parentDir / Path('../models/mobilenet-ssd_openvino_2021.4_8shave.blob')).resolve().absolute())
13videoPath = str((parentDir / Path('../models/construction_vest.mp4')).resolve().absolute())
14if len(sys.argv) > 2:
15 nnPath = sys.argv[1]
16 videoPath = sys.argv[2]
17
18if not Path(nnPath).exists() or not Path(videoPath).exists():
19 import sys
20 raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')
21
22# MobilenetSSD label texts
23labelMap = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow",
24 "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
25
26# Create pipeline
27pipeline = dai.Pipeline()
28
29# Define sources and outputs
30nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
31
32xinFrame = pipeline.create(dai.node.XLinkIn)
33nnOut = pipeline.create(dai.node.XLinkOut)
34
35xinFrame.setStreamName("inFrame")
36nnOut.setStreamName("nn")
37
38# Properties
39nn.setConfidenceThreshold(0.5)
40nn.setBlobPath(nnPath)
41nn.setNumInferenceThreads(2)
42nn.input.setBlocking(False)
43
44# Linking
45xinFrame.out.link(nn.input)
46nn.out.link(nnOut.input)
47
48# Connect to device and start pipeline
49with dai.Device(pipeline) as device:
50
51 # Input queue will be used to send video frames to the device.
52 qIn = device.getInputQueue(name="inFrame")
53 # Output queue will be used to get nn data from the video frames.
54 qDet = device.getOutputQueue(name="nn", maxSize=4, blocking=False)
55
56 frame = None
57 detections = []
58
59 # nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height
60 def frameNorm(frame, bbox):
61 normVals = np.full(len(bbox), frame.shape[0])
62 normVals[::2] = frame.shape[1]
63 return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)
64
65 def to_planar(arr: np.ndarray, shape: tuple) -> np.ndarray:
66 return cv2.resize(arr, shape).transpose(2, 0, 1).flatten()
67
68 def displayFrame(name, frame):
69 for detection in detections:
70 bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
71 cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
72 cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
73 cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255, 0, 0), 2)
74 # Show the frame
75 cv2.imshow(name, frame)
76
77 cap = cv2.VideoCapture(videoPath)
78 while cap.isOpened():
79 read_correctly, frame = cap.read()
80 if not read_correctly:
81 break
82
83 img = dai.ImgFrame()
84 img.setData(to_planar(frame, (300, 300)))
85 img.setTimestamp(monotonic())
86 img.setWidth(300)
87 img.setHeight(300)
88 qIn.send(img)
89
90 inDet = qDet.tryGet()
91
92 if inDet is not None:
93 detections = inDet.detections
94
95 if frame is not None:
96 displayFrame("rgb", frame)
97
98 if cv2.waitKey(1) == ord('q'):
99 breakPipeline
Need assistance?
Head over to Discussion Forum for technical support or any other questions you might have.